
241

Team Competition∗

Pingzhong Tang
Computer Science

Department
Hong Kong University of
Science and Technology

Clear Water Bay, Hong Kong
kenshin@cse.ust.hk

Yoav Shoham
Computer Science

Department
Stanford University, California,

94305
shoham@stanford.edu

Fangzhen Lin
Computer Science

Department
Hong Kong University of
Science and Technology

Clear Water Bay, Hong Kong
flin@cse.ust.hk

ABSTRACT

In a team competition, two participating teams have an equal num-
ber of players, and each team orders its players linearly based on
their strengths. A mechanism then specifies how the players from
the two teams are matched up and how to score them. There are
two types of manipulations by a team: Misreporting the strength
ordering and deliberately losing a match. To identify these strate-
gically behaviors, we model the team competition problem in a
game-theoretical framework, under which we prove necessary and
sufficient conditions which ensure that truthful reporting and max-
imal effort in matches are equilibrium strategies, and which further
ensure certain fairness conditions described by choice functions.

Categories and Subject Descriptors

J.4 [Social and Behavior Sciences]: Economics; I.2.11 [Distributed

Artificial Intelligence]: Multi-agent System

General Terms

Economics

Keywords

Team Competition, Mechanism Design, Truthfulness, Dominant
Strategy Implementation

1. INTRODUCTION
Tens of centuries ago in ancient China, the emperor Qi chal-

lenged his minister Tian to a horse race. The rule was that each of
them would put forward three horses, one at a time, and each time
the two horses would race. Whoever won at least two of the races
would be the winner. As the story goes, Tian learnt that his best
horse was not as good as the Qi’s best but better than Qi’s second
best one, and his second best one was not as good as Qi’s second
best but better than Qi’s worst one. Knowing that Qi would put
forward his best horse first, his second best second, the clever min-
ister put forward his worst horse first, his best horse second and his
second best last. As expected, while Tian’s worst horse lost badly
to Qi’s best horse at the beginning of the competition, he won it
∗Supported in part by HK RGC CERG616707 and NSF grants IIS-
0205633-001 and SES-0527650.

Cite as: Team Competition, Pingzhong Tang, Yoav Shoham and Fangzhen
Lin, Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

nonetheless because his best beat Qi’s second best, and his second
best beat Qi’s worst horse.

More generally, we can consider the competition to be between
two teams (e.g, the emperor’s team and the minister’s team in the
story), and each team has an equal number of players (e.g, the
horses in the story). Each team is asked to provide an order by
which his players will compete, and the rule or the agenda of the
competition specifies how the team’s players will be matched up
based on the orders given by the two teams, and who will win the
competition based on the individual matches. In the story, the rule
was simply that the players from the two teams raced against each
other according to the orders given by the two teams, and whoever
won more matches won the competition.

Similar examples are the current international team competitions
for table tennis (aka Corbillon Cup and Swaythling Cup). Two
competing countries put forward three players in a certain order.
The agenda is a modification of the horse racing one by adding two
matches between the first player and the second player from each
team.

In this paper, we consider how to design rules of a competition
so that the outcome will reflect the “true strength” of the competing
teams. In the case of horse race mentioned above, one is inclined
to say that the emperor’s team was stronger and should have won
the competition. But in general, what counts as the “true strength”
of a team and how to compare them is also an issue that we need
to consider. To address these problems, we shall consider the team
competition problem as a mechanism design problem.

Since first mathematically analyzed by Hurwicz [2], the theory
of mechanism design has been extensively studied in economics
(see [5] for an introduction and [6] for a survey), theoretical com-
puter science [7] and artificial intelligence [10, 11, 9].

We formulate a team competition as a mechanism which takes
the reported orderings as the input and returns an outcome of the
competition. According to the reported orderings, the mechanism
specifies a number of single matches and the score awarded to the
winning player of each match. Each team then gets the sum of all
the scores from its winning players and such a score profile from
both teams reflects the outcome. Each team prefers an outcome
with higher own score and lower opponent’s score.

Based on the dependence between the matches specified, we cat-
egorize all the mechanisms into the static and the dynamic. In
a static mechanism, each match is predetermined and takes place
independently of the results of other matches while in a dynamic
mechanism, each match may only take place if the results of previ-
ous matches satisfy certain condition.

We propose three major objectives for a desirable mechanism to
achieve: truth revelation, fairness and conciseness. In other words,
truth revelation requires that reporting the truthful ordering of its

Cite as: Team Competition, Pingzhong Tang, Yoav Shoham, Fangzhen
Lin, Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.),
May, 10–15, 2009, Budapest, Hungary, pp. 241–248
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

242

players is a dominant strategy for each team in the game induced by
the mechanism, that is, no matter what the opponent reports, a team
can never benefit from misreporting. Fairness requires that when
both team play truthfully, the resulting outcomes fairly reflect the
strength of each team, which is characterized by a choice function.
For each state of the world (described by an ordering over all the
players), the choice function selects socially desirable outcome to
be implemented by the mechanism. Fairness can then be described
by a set of conditions imposed on the choice function such as player
anonymity, team anonymity, monotonicity and pareto efficiency.
We also propose four particular choice functions that satisfies all
the conditions. Finally, upon the satisfaction of the previous two
objectives, we sometimes require conciseness of the mechanism,
that is, the mechanism keeping the number of matches as small as
possible.

We then give sufficient and necessary conditions to allow a mech-
anism to implement these objectives. In particular, static mech-
anisms can truthfully implement two choice functions mentioned
above but fail to implement the other two, while for dynamic mech-
anisms, even a subclass called “knock-in” suffices in truthfully im-
plementing all the four choice functions. Generally speaking, dy-
namic mechanisms are also supposed to be more concise than the
static ones.

Finally, we also deal with the moral hazard issue [4] where each
team has another level of strategic behavior: a team can benefit
from throwing a match in certain mechanisms. To prevent this from
happening, we force honest play to be a equilibrium strategy for
each team: given the other team play honestly, we would also prefer
to play honestly. We give sufficient and necessary conditions for
this part too. Interestingly, most of these conditions coincide with
those of dominant strategy truthfulness.

The rest of the paper is organized as follows: we introduce the
mechanism design model for team competition problem and then
describe desirable objectives to achieve. Next we characterize the
implementation issues of two types of mechanisms by several the-
orems. We also deal with a variation to the problem where the
players can strategically lose. Finally, we discuss certain interest-
ing issues and then conclude the paper.

2. BASIC MODELS
In this section, we build up the mathematic model for analyzing

team competition.

2.1 Team Competition Environments
We first define the so called team competition environment where

the designer operates.

DEFINITION 1. A team competition environment C is a tuple
(A, B, Θ, O, P), where

• A = {a1, . . . , an} is the set of players of team A.

• B = {b1, . . . , bn} is the set of players of team B.

• Θ is the set of possible states, where

– Each state θ ∈ Θ uniquely defines a linear order >θ

on A ∪ B. If a >θ b, then a wins the match versus b in
state θ.

– We denote θA and θB as the orders on A and B that
are derived respectively from θ, which can be seen as
the private information of A and B that cannot be ob-
served by others. We denote ΘA and ΘB as the set of
all possible θA and θB .

• O = {(sA, sB)|sA, sB ∈ R} is the set of outcomes of the
competition. sA and sB are the scores for team A and B
respectively.

• P is a preference relation over O.

In this paper, we consider P to be the one that team A weakly
prefers (sA, sB) to (s′A, s′B) iff

sA ≥ s′A and sB ≤ s′B ,

and the preference becomes strict if it is weak and one of the equal-
ity does not hold. Team B has the opposite preference. It is worth
pointing out that when sA > s′A and sB > s′B , the preference
between (sA, sB) and (s′A, s′B) is not defined. Indeed, it is some-
times unclear whether 2 : 3 is better than 3 : 41.

An easy way to avoid this is to choose a subset of O with sA +
sB = c, where c is a constant. A mechanism is constant-sum if it is
defined on such a subset. Our first type of mechanisms called static
mechanisms are constant-sum.

2.2 Static Mechanisms

DEFINITION 2. A static mechanism M on a team competition
environment is a tuple (SA, SB , C) where

• SA : ΘA → LA is the set of A’s pure strategies that map
A’s private information to a possible linear orders on A. We
denote LA as the set of all linear orders on A. We also allow
randomization, which is a lottery over SA. Similar for SB .

• C is an n × n score matrix Cn×n where

– Each entry ci,j denotes the score assigned to the match
between ai and bj , where ai is the i-th player reported
by A and bj the j-th player reported by B.

– The winner of the match gets ci,j and the loser gets 0.

– The total score that team A can get in state θ is sA =
Σ(ai>θbj)∈A×Bci,j . Similar for sB .

– Such a pair (sA, sB) creates an outcome in O.

In fact, when there is no restriction on Θ, ΘA and LA both de-
note the set of all permutations on A. However, we make different
notations to clarify that ΘA is the set of private information based
on which A chooses an order from LA to report.

In comparison with standard mechanism definition ([8], Chapter
10), the matrix C plays the role of an outcome function: for each
state, the matrix maps the reports from A and B to an outcome
(sA, sB) ∈ O. Note that sA + sB = c, where c = Σ1≤i,j≤nci,j .
Therefore, it is constant-sum and the preference relation P is well
defined on O.

Note also that there are potentially n2 matches since there are n2

entries in the matrix. However, if ci,j = 0, then a match between
ai and bj is not necessary, because its outcome will not affect the
score of either team. Similarly, if ci,j �= 0, it does not necessarily
mean that there is only one match between ai and bj . It could
possibly mean that there are several matches between ai and bj

whose scores sum up to ci,j so that they are equivalent to a single
match with score ci,j .

1We will get back to another type of preference where each team
is not so sensitive about the score but only cares about if it wins or
not. In this case, 2 : 3 is equally preferred to 3 : 4

Pingzhong Tang, Yoav Shoham, Fangzhen Lin • Team Competition

243

EXAMPLE 1. (Horse Race) The aforementioned horse race is
a static mechanism, whose score matrix is as follows:⎡

⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦

EXAMPLE 2. (Table Tennis) The international team competi-
tion for table tennis is also a static mechanism, whose score matrix
is as follows: ⎡

⎣ 1 1 0
1 1 0
0 0 1

⎤
⎦

2.3 Dynamic Mechanisms
Consider a static mechanism where there are 4 matches: (a1 vs

b1), (b1 vs a2), (a2 vs b2) and (a1 vs b2). Suppose the matches
take place sequentially and always the first player wins, then after
the first 3 matches, we already know that a1 >θ b2 by transitivity.
Therefore, the 4th match is redundant.

The above intuition can be realized in designing more concise
mechanisms called dynamic mechanism, where the next match is
jointly determined by the reported lists as well as the results of
previous matches.

DEFINITION 3. A dynamic mechanism D on a team competi-
tion environment is a tuple (SA, SB , H, fn, Rs) where

• SA and SB are the sets of strategies the same as the ones in
static mechanism

• H = HT ∪HN is the set of histories, where HT denotes the
set of terminal histories and HN are the set of nonterminal
ones. They are defined inductively as follows:

– ∅ ∈ HN

– If h ∈ HN , then h : (ai > bj) ∈ H and h : (bj >
ai) ∈ H . It says if h is a nonterminal history, then
by concatenating it with the match where ai wins bj or
bj wins ai, a new history is produced. The new history
can be either terminal or nonterminal.

• fn : HN × PA × PB → A × B the next function that maps
each nonterminal history as well as the reported messages to
a pair of players to compete in the next match.

• Rs : HT → O the scoring rules that maps each terminal
history to an outcome, i.e, a score profile.

Dynamic mechanism is a more general concept than static mecha-
nism in the sense that every static mechanism can be represented in
the form of a dynamic one: the one with constant next function that
arranges a list of independent matches sequentially. Quite often, it
is more interesting to focus on certain specific classes of dynamic
mechanisms. For instance, the following “knock-out” mechanism
has been quite popular in the Go community.

EXAMPLE 3. (Knock-out Competition) Upon receiving the re-
ported lists of players {a1, . . . , an} and {b1, . . . , bn},

• a1 vs b1 will be initiated as the first match.

• In the following rounds, if the current match is ai vs bj , then
the next function will assign ai+1 vs bj if bj beats ai and as-
sign ai vs bj+1 otherwise.

• The set of terminal histories are those with every player in
one team has lost. The scoring rule assign the winning team
n points and the losing team the number of matches that it
wins.

It can be seen from the above example that there are at most 2n−
1 matches in a knock-out competition: each match eliminates one
player who will never show up in the future matches. This perfectly
fits the context of a Go competition, where a match normally takes
hours.

3. DESIRABLE PROPERTIES
The space of static as well as dynamic mechanisms is obviously

infinite. For this sake, it is necessary to identify desirable properties
for mechanisms to satisfy. For example, in the Horse Racing exam-
ple, we might hope that a mechanism that forces both teams to re-
port the truth. Further after receiving the truth, we might hope that
the outcome of the match fairly reflects the true state. For exam-
ple in the horse racing competition, we should expect the outcome
to be at least some score profile in which the emperor wins. Last
but not least, we might also hope that the number of matches as
small as possible. We characterize some of the standards using the
choice function and ask the question what mechanisms truthfully
implement the choice function.

3.1 Dominant Strategy Truthfulness

DEFINITION 4. We say that a mechanism is dominant-strategy
truthful if for every state θ, a team cannot end up with a worse out-
come by reporting its truthful order induced by >θ than reporting
any other order, no matter what the other team reports.

If a mechanism is dominant-strategy truthful, then by being aware
of the private information, each team will choose to report its truth-
ful ordering because it is in its best interest to do so.

3.2 Choice Functions
As already mentioned, a choice function describes which out-

come should occur for a given state.

DEFINITION 5. A choice function f : Θ → O maps a state to
an outcome.

3.2.1 Restrictions on Choice Functions
The first restriction on a choice function is what we call player

anonymity, which says the players are indistinguishable inside a
team.

DEFINITION 6. (Player Anonymity) Suppose p(A) (p(B)) is a
permutation of A(B), and if f(θ) = o, then f(θ′) = o where θ′ is
obtain from θ by replacing each a ∈ A (b ∈ B) by its permutation
p(a) (p(b)).

For example,

a >θ1 b >θ1> b′ >θ1 a′,

should lead to the same outcome as

a′ >θ2 b >θ2> b′ >θ2 a,

as well as

a >θ3 b′ >θ3> b >θ3 a′.

The second restriction is called team anonymity, which says the
choice function f does not discriminate for or against one particular
team.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

244

DEFINITION 7. (Team Anonymity) Suppose p : A → B is a
bijection between A and B, and if f(θ) = (sA, sB), then f(θ′) =
(sB , sA) where θ′ is obtained from θ by swapping each a ∈ A and
p(a) ∈ B.

For example, again if f(θ1) = (sA, sB) and θ1 is as follows:

a >θ1 b >θ1> b′ >θ1 a′,

then f(θ4) = (sB , sA), where θ4 is as follows:

b >θ4 a >θ4> a′ >θ4 b′.

.
The third restriction is the so-called monotonicity, which says

no worse outcome will be brought about for a team if none of its
players falls in the overall ranking.

DEFINITION 8. (Monotonicity) For any two states θ and θ′, if
f(θ) = o, f(θ′) = o′ and θ′ is an improvement to θ for team
A(B), then A(B) at least prefers o′ the same as o. A state θ′ is an
improvement to another state θ for team A(B), if ∀a ∈ A (b ∈ B),
the ranking of a(b) in state θ′ is improved or stays the same as in
state θ.

Finally, the last restriction pareto efficiency says that if one team
has the better ith best player for all i, then it should get a higher
score in the final outcome.

DEFINITION 9. (Pareto Efficiency) If in any state θ satisfying
∀ 0 ≤ i ≤ n, the i-th ranked player of team A is better ranked than
team B, then f(θ) = (SA, SB) satisfies SA ≥ SB .

For example, if

a >θ5 b >θ5> a′ >θ5 b′,

then sA ≥ sB . The Pareto efficiency is not independent since we
can prove in the following that team anonymity plus monotonicity
imply the pareto principle.

PROPOSITION 1. A choice function f satisfies the pareto prin-
ciple if it is both team anonymous and monotonic.

PROOF. Suppose otherwise, then there exists a state θ such that
∀ 0 ≤ i ≤ n, the i-th ranked player ai of team A is better ranked
than that bi of team B and sA < sB . Now we swap the role of ai

and bi for all i in θ and we call the new state θ′. By team anonymity,
we have f(θ′) = f(sB , sA), which is a worse outcome than f(θ)
for B. However, since θ′ is an improvement to θ for team B, team
B’s outcome then should be no worse by monotonicity. This leads
to a contradiction.

3.2.2 Examples of Choice Functions
It is not difficult to see that the following four choice functions

satisfy all the restrictions mentioned above.

• Borda Count: According to >θ on A∪B with |A∪B| = 2n,
we assign the player that ranked first 2n-1 points, the second
2n-2 points,..., and the last 0 point. sA = Σai∈Apoint(ai).
sB can be defined symmetrically. fBC(θ) = (sA, sB).

• Pairwise comparison: Suppose θA and θB are (a′
1 > a′

2 >
, . . . , > a′

n) and (b′1 > b′2 >, . . . , > b′n). Then sA =
|{(a′

i, b
′
i)|a′

i >θ b′i}|. sB can be defined symmetrically.
fPC(θ) = (sA, sB).

• Max: Suppose the best players of A and B by θ are a and b
respectively, then fMax(θ) = (1, 0) if a >θ b and fMax(θ) =
(0, 1) otherwise.

• Min: Suppose the worst players of A and B by θ are a and
b respectively, then fMin(θ) = (1, 0) if a >θ b, otherwise
fMin(θ) = (0, 1).

In other words, fBC sums the rankings of all the players in each
team, fPC sums all the winnings for the pairwise comparison be-
tween players in the “same level” while fMax and fMin care only
about the best and worst players.

3.2.3 Dominant Strategy Truthful Implementation

DEFINITION 10. A mechanism M dominant strategy truthfully
implements a choice function f, if M is dominant strategy truthful
and if both teams report truthfully, the resulting outcome coincides
with the one prescribed by f .

If a mechanism dominant strategy truthfully implements a choice
function, then both teams will report truthfully. Moreover, the
truthful reports will lead to the desirable outcome prescribed by
f .

3.3 Conciseness
As mentioned before, for a static mechanism, if all entries of its

scoring matrix are non-zero, there are potentially n2 matches while
for certain classes of dynamic mechanisms such as the knock-out,
there are at most 2n − 1 matches. In general, we hope that the
number of matches is at most linear in the number of players.

DEFINITION 11. (Linearity) A mechanism is linear if the num-
ber of matches is O(n), where n is the number of players in each
team.

4. THE RESULTS
In this section, we present our answers to the question we asked

earlier: what mechanisms implement the choice function with pre-
viously mentioned properties.

4.1 Implementation by Static Mechanisms
We say that a matrix Cn×n is non-increasing if ci1,j1 ≥ ci2,j2

whenever i1 ≤ i2 and j1 ≤ j2 hold simultaneously.

THEOREM 1.

1. A static mechanism M is dominant strategy truthful iff its
score matrix Cn×n is non-increasing.

2. If a static mechanism M dominant strategy truthfully imple-
ments a choice function f , then

• f is player anonymous;

• f is team anonymous iff the score matrix satisfies C =
CT , where CT is the transposition of C.

• f is monotonic iff the score matrix has no negative entry

PROOF.

1. ⇒: If M is dominant strategy truthful, without loss of gen-
erality, suppose there exist i, j such that ci,j < ci+1,j . Now
consider such a state θ : b1 > b2 >, . . . , bn−1 > a1 >
, . . . , ai, bn, . . . , an. In other words, θ is a state where team
A can win only i matches against the worst player bn of B.
Now if B reports bn as its jth player, then if A reports hon-
estly, he will get c1,j+, . . . , +ci,j while if A swaps ai and
ai+1, A will get a better score a1,j+, . . . , +ci−1,j + ci+1,j ,
which contradicts the dominant strategy truthfulness of M .

Pingzhong Tang, Yoav Shoham, Fangzhen Lin • Team Competition

245

⇐: If Cn×n is non-increasing, for any state θ and any b ∈
B reported as jth player, suppose according to θ, we have
a1 >, . . . , ai > b > ai+1 >, . . . , > an. If A reports
honestly, it will get c1,j+, . . . , +ci,j from b, otherwise, it
will get cm1,j+, . . . , +cmi,j . Since C is non-increasing, we
have c1,j , . . . , ci,j are the greatest i entries in column j of C,
so c1,j+, . . . , +ci,j ≥ cm1,j+, . . . , +cmi,j . Since j and θ
are arbitrarily chosen, we have A is dominant strategy truth-
ful.

2. This part follows immediately from the definitions.

Obviously, the score matrix in neither horse racing nor table ten-
nis competition is non-decreasing. According to theorem 1, they
are not dominant strategy truthful. For instance in the table tennis
example, if the state is as follows: a1 > b1 > b2 > a2 > b3 > a3.
Note that if both A and B reported truthfully, B will lose the com-
petition by 2:3. However, if B misreports his order as b1 >′ b3 >′

b2 and A still reports truthfully , B will win the competition by 3:2.

THEOREM 2.

1. The static mechanism dominant strategy truthfully implements
fBC if its score matrix Cn×n = 1n×n, where 1n×n is the
matrix with all the entries equal to 1;2

2. The static mechanism dominant strategy truthfully implements
fMax if its score matrix satisfies c1,1 = 1 and ci,j = 0 oth-
erwise;

3. There is no static mechanism dominant strategy truthfully im-
plements either fPC or fMin.

PROOF.

1. It is not hard to see that for 1n×n, the mechanism simply
counts the sum of the number of opponents that are weaker
for each player. Moreover, it is non-decreasing. So it truth-
fully implements fBC minus a constant n(n−1)

2
in dominant

strategy. The constant stands for the sum of additional scores
if they are allowed to play with their teammates.

2. This part follows directly from the definition

3. Suppose M with score matrix C truthfully implements fPC ,
then suppose for θ : a1 > b1 > . . ., fPC(θ) = (sA, sB),
then we have for θ′ : b1 > a1 > . . ., fPC(θ′) = (sA −
1, sB + 1). This can be achieved only if c1,1 = 1. Similarly,
suppose for θ′′ : . . . , > an > bn, fPC(θ′′) = (s′A, s′B)
then we have for θ′′′ : . . . , > bn > an, fPC(θ′′′) = (s′A −
1, s′B +1). This can be achieved only of cn,n = 1. Since M
is dominant truthful, C is non-increasing, therefore C can
only be 1n×n. However, 1n×n obviously does not imple-
ment fPC . A contradiction. Similar for fMin.

It is worth pointing out that the current international team compe-
tition for tennis (aka Davis Cup) uses the static mechanism whose
score matrix is 12×2, therefore it implements Borda Count. How-
ever, the number of matches is n2, although it does not make much
difference with linear ones when n = 2.

2In fact, it implements Borda Count minus a constant n(n−1)
2

.

4.2 Implementation by Dynamic Mechanisms
Unlike any static mechanism, whose preference is well-defined

on a constant-sum set of outcomes, there are cases where the pref-
erences on the set of outcomes are not well-defined for dynamic
mechanisms. Therefore, it is meaningless to talk about the im-
plementation issues for general dynamic mechanisms. Alterna-
tively, we focus on a particular class of dynamic mechanism called
“knock-in” in contrast to the “knock-out” mechanism mentioned in
example 3. That is, after each match, the loser stays to compete
with the winner’s successor.

DEFINITION 12. (Knock-in Competition) Upon receiving the
reported lists of players {a1, . . . , an} and {b1, . . . , bn},

• a1 vs b1 is initiated as the first match;

• In the following rounds, if the current match is ai vs bj , then
the next function will assign ai+1 vs bj if ai beats bj and as-
sign ai vs bj+1 otherwise.

• The set of terminal histories are those where every player has
won in one team, which we call the winning team. The other
team is called the losing team.

It follows from the definition immediately that

THEOREM 3.

1. Every knock-in mechanism satisfies linearity.

2. By assigning 1 to the winning team and 0 to the losing team
in each terminal history, the knock-in mechanism always leads
to an outcome that coincides with the one predicated by fMin,
and therefore truthfully implements fMin in dominant strat-
egy.

PROOF.

1. This part follows by observing that a winner is eliminated
each match and never reappears. So a whole team is elimi-
nated for at most 2n − 1 matches.

2. Note that in a knock-in competition, the team with the bet-
ter worst player is always the winning team, no matter what
two team reports. So the knock-in mechanism trivially im-
plements (no matter truthfully or not) fMin.

The flexibility of designing a knock-in mechanism lies in the
choice of scoring rules. The scoring rules should be designed in
a way such that, on one hand the preference for the set of terminal
histories is well defined and on the other hand, the scores align with
the incentives of reporting truth. We introduce in the following, two
possible classes of such scoring rules.

4.2.1 Score By Play Order
With this type of scoring rule, we assign a constant score c1 to the

winner of the first match, a constant score c2 to the second match,
and so on. The score of the team and an outcome are defined as
usual. Note that the number of matches in such a knock-in mech-
anism is a variable ranging from n to 2n − 1. In order to make it
a constant-sum competition, we uniformly assign 2n constants as
follows:

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

246

DEFINITION 13. In a score-by-play-order rule, we have a list
of 2n constants {c1, c2, . . . , c2n}, we assign c1 to the winner of the
first match, c2 to the winner of the second match and so on. When
reaching a terminal history after n0 matches, n ≤ n0 ≤ 2n − 1,
we assign the remaining constants cn0+1, . . . , c2n to the remaining
players (the order does not matter). Therefore, each player receives
a score in a terminal history.

In this way, we have sA + sB = Σ1≤i≤2nci. The following
theorem characterizes the dominant strategy truthfulness of knock-
in mechanisms with this type of scoring rules.

THEOREM 4. A knock-in mechanism M by a score-by-play-
order rule

• is dominant strategy truthful iff {c1, c2, . . . , c2n} is non-increasing.

• dominant strategy truthfully implements a choice function f ,
then

– f is player anonymous, team anonymous, monotonic
and pareto efficient.

• dominant strategy truthfully implements

– fBC with {2n − 1, 2n − 2, . . . , 1, 0}.

– fMax with {1, 0, . . . , 0}.

PROOF. We prove the first claim and leave the rest to the read-
ers.
⇒: If M is dominant strategy truthful and suppose {c1, c2, . . . , c2n}
is not non-increasing. Without loss of generality, let cm < cm+1.
Suppose the mth match is between ai and bj . Now consider a state

θ : ai > bj > ai+1 > bj+1.

If A reports truthfully, the competition goes as follows:
ai wins bj , team A gets cm;
ai+1 loses to bj , team B gets cm+1;
ai+1 wins bj+1, team A gets cm+1;

If A swaps ai and ai+1, the competitions goes as follows:
ai+1 loses to bj , team B gets cm;
ai+1 wins bj+1, team A gets cm+1;
ai wins bj+1, team A gets cm+1.
Obviously by lying, team A gets a better outcome. A contradic-
tion.
⇐: If {c1, c2, . . . , c2n} is non-increasing, we prove by enumera-
tion that if ai > ai+1, then it is always no worse to report . . . , ai, ai+1, . . .
than . . . , ai+1, ai,Suppose the current opponent is bj followed
by bj+1 and the score of the current match is cm. There are the
following cases:

• Case 1: ai > ai+1 > bj > bj+1 or ai > ai+1 > bj+1 > bj .
No matter reporting ai, ai+1 or ai+1, ai will give team A the
same outcome.

• Case 2: ai > bj > ai+1 > bj+1. By reporting ai, ai+1, the
competition goes as follows:
ai wins bj , team A gets cm;
ai+1 loses to bj , team B gets cm+1;
ai+1 wins bj+1, team A gets cm+2;
while by reporting ai+1, ai, the competition goes as follows:
ai+1 loses to bj , team B gets cm;
ai+1 wins bj+1, team A gets cm+1;
ai wins bj+1, team A gets cm+2;
Obviously truthful reporting is no worse for team A.

• Case 3: ai > bj+1 > ai+1 > bj . Now matter reporting
ai, ai+1 or ai+1, ai will give team A the same outcome.

• Case 4: ai > bj > bj+1 > ai+1. By reporting ai, ai+1, the
competition goes as follows:
ai wins bj , team A gets cm;
ai+1 loses to bj , team B gets cm+1;
ai+1 loses bj+1, team B gets cm+2;
while by reporting ai+1, ai, the competition goes as follows:
ai+1 loses to bj , team B gets cm;
ai+1 loses bj+1, team B gets cm+1;
Note that ai is still in the game. Since ai > ai+1, ai will
win whoever ai+1 wins, getting a score cm+t, t > 0. Since
cm ≥ cm+t. Truthful reporting is no worse for team A.

• Case 5: ai > bj+1 > bj > ai+1. This case is equivalent to
case 4.

• Case 6: bj > ai > bj+1 > ai+1. By reporting ai, ai+1, the
competition goes as follows:
ai loses to bj , team B gets cm;
ai wins bj+1, team A gets cm+1;
ai+1 loses bj+1, team B gets cm+2;
while by reporting ai+1, ai, the competition goes as follows:
ai+1 loses to bj , team B gets cm;
ai+1 loses bj+1, team B gets cm+1;
ai will win immediately after ai+1 wins and get cm+t ≤
cm+1. Truthful reporting is no worse for team A.

• Case 7: bj+1 > ai > bj > ai+1. By reporting ai, ai+1, the
competition goes as follows:
ai wins bj , team A gets cm;
ai+1 loses to bj , team B gets cm+1;
ai+1 loses bj+1, team B gets cm+2;
while by reporting ai+1, ai, the competition goes as follows:
ai+1 loses to bj , team B gets cm;
ai+1 loses bj+1, team B gets cm+1;
ai will win immediately after ai+1 wins and get cm+t ≤ cm.
Truthful report is no worse for team A.

• Case 8: bj+1 > ai > ai+1 > bj or bj > ai > ai+1 > bj+1.
No matter reporting ai, ai+1 or ai+1, ai will give team A the
same outcome.

• Case 9: bj+1 > bj > ai > ai+1 or bj > bj+1 > ai > ai+1.
No matter reporting ai, ai+1 or ai+1, ai will give team A the
same outcome.

Therefore, truthful reporting is always no worse than misreport-
ing.

For example, to truthfully implement fBC , we first let a1 vs b1

and winner gets 2n − 1, the loser stays to compete with the next
player of the other team, and so on. Since the earlier matches have
higher scores and each player would get a score anyway, each team
then would like to win as early as possible, so truthful report is no
worse than misreport.

4.2.2 Score by Position
With this type of scoring rules, we assign the score to each match

similarly to what we did in the static mechanism, except that each
match is asymmetric: the score that ai gets from winning ai vs bj

may not be the same as bj gets from winning the same match. Fur-
ther, for the sake of symmetry, we require that the score that ai gets
from winning ai vs bj is the same as the score bi gets from win-
ning bi vs aj . Therefore, only one score matrix is needed for such
a scoring rule.

Pingzhong Tang, Yoav Shoham, Fangzhen Lin • Team Competition

247

DEFINITION 14. In a score-by-position rule with a score ma-
trix Cn×n, for any match ai vs bj , ai gets ci,j if he wins and bj

gets cj,i otherwise.

Unfortunately, in general this type of mechanism is not constant-
sum. However it can truthfully implements fPC in dominant strat-
egy with certain restrictions on C.

THEOREM 5.

• A knock-in mechanism M with score-by-position rule is dom-
inant strategy truthful if its score matrix satisfies ∀1 ≤ i, j, i+
1, j + 1 ≤ n

1. ci,j ≥ ci,j+1

2. ci,j ≥ ci+1,j+1

• A knock-in mechanism M with score-by-position rule dom-
inant strategy truthfully implements fPC with ci,j = 1 if
i ≥ j and ci,j = 0 otherwise.

PROOF.

• The proof of the first claim is similar to that of theorem 4.
We enumerate all the possible cases of every neighboring
pair and show that truthful reporting is always no worse than
misreport.

• First, if a mechanism with the score matrix C such that ci,j =
1 if i ≥ j and ci,j = 0 otherwise, then it satisfies

1. ci,j ≥ ci,j+1

2. ci,j ≥ ci+1,j+1

So, according to the first claim, it is dominant truthful. The
implementation of fPC then follows from the fact that ac-
cording to the matrix, each player can get 1 point iff it beats
certain higher or equally ranked player.

In other words, to implement fPC , we assign each player 1 point
if he wins some higher ranked opponents while assign each player 0
point if he loses or win some lower ranked opponents. For example,
if a3 wins b2, then a3 gets 1 and b2 gets 0, otherwise both a3 and
b2 get 0. This indicates a higher ranked player can never score by
competing with a lower ranked player, but he still has to win to
leave the competition so that his lower ranked team mates can have
a chance to score.

4.3 Summary
To sum up, we generalize dominant strategy truthfulness and

truthful implementation by certain conditions for both static and
dynamic mechanisms. We also prove that static mechanisms are
able to implement fBC and fMax but fail to implement fPC and
fMin while even a small amount of dynamic mechanisms called
knock-in is sufficient to implement all the four choice functions.
Furthermore, the static mechanisms are not guaranteed to be linear
while the knock-in mechanisms, by eliminating one player each
match, can never exceed 2n − 1 matches.

5. STRATEGIC LOSING
The assumption so far is that once the state θ induces a >θ b,

a will always beat b. This makes sense when the players are non-
strategic individuals. For instance, each player is a number in a
sealed envelope and the winner is the greater one.

However, sometimes the players can be strategic in the sense that
the stronger one can lose a match deliberately if he wants to. Fur-
thermore, the weaker one may also choose to lose if he predicts that
the stronger one may do so. For example, if we assign a sufficiently
large score to the second match in a knock-in mechanism, then each
team’s best player will play the first match as badly as he can in or-
der to compete in the second match. Similar to the case where there
are negative entries in the score matrix of a static mechanism.

The best way to prevent this from happening is to force “play-
ing one’s best” as a dominant strategy of a team. In other words,
no matter what other team does, it is always no worse to play our
best. However, we make no attempt to study this formally, mainly
because when both players try to play badly, the result of the match
is unclear.

As a compromise, we can force “playing one’s best” as a Nash
equilibrium strategy of each team. In other words, if the opponents
always play their best, it is never any worse to do the same.

DEFINITION 15.

• A strategy Sp : ΘA(B) → {P, L} of a player in a static
mechanism is function that maps the private information to a
action of either Play the best one’s best or Lose deliberately.

• A strategy Sp : ΘA(B) × HN → {P, L} of a player in a
dynamic mechanism is function that maps each state and a
nonterminal history to a action.

Suppose we have a >θ b, then if a plays P , a wins no matter what
b plays; if b plays P , a wins if a plays P and b wins if a plays L.3

DEFINITION 16. We say a mechanism is honest, if in each state,
given all the players in the other team play P , it is also no worse
for each player to play P .

The following theorem generalizes the result of honesty in both
static and dynamic mechanisms.

THEOREM 6.

• A static mechanism is honest iff its score matrix C has no
negative entry.

• A knock-in mechanism with score-by-play-order rule is hon-
est iff {c1, c2, . . . , c2n} is non-increasing.

• A knock-in mechanism M with score-by-position rule is hon-
est if its score matrix satisfies ∀1 ≤ i, j, i + 1, j + 1 ≤ n

1. ci,j ≥ ci,j+1

2. ci,j ≥ ci+1,j+1

It is interesting that for knock-in mechanisms, the conditions that
characterize honesty coincide with that of dominant strategy truth-
fulness. In other words, as long as these conditions are satisfied,
the resulting mechanism is both truthful and honest.

6. OTHER ISSUES
In this section, we discuss other interesting issues that we do not

cover in previous sections.

3Our result still holds when randomization is allowed, but we omit
this here the definition of the possible outcomes when someone
plays a mixed strategy.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

248

6.1 Win-Lose-Tie
We have considered an outcome to be a pair of real numbers

representing the scores that each team will receive at the end of
the competition. One could argue that in many cases, what really
matters is who won the game. In the two-team competition set-
ting considered in this paper, this can be done by assuming three
possible outcomes 1 (team A won), 0 (tie), and -1 (team A lost).

An interesting question then is how this will affect the results
of this paper. First of all, we notice that instead of changing the
set of outcomes, the same effect can be acheived by changing the
preference relation P into the following ordering: A strictly prefers
(sA, sB) over (s′A, s′B) iff either

sA > sB and s′A ≤ s′B

or

sA = sB and s′A < s′B .

and is indifferent to (sA, sB) and (s′A, s′B)4 iff either

sA > sB and s′A > s′B

or

sA = sB and s′A = s′B

or

sA < sB and s′A < s′B

. It is similar for team B’s preference.
One can verify that, if a condition, which is sufficient for domi-

nant strategy truthfulness (or implementation of a choice function)
previously, is still sufficient because the weak preference persists
(o1 is weakly preferred to o2 before implies o1 is weakly preferred
to o2 now). However, a previously necessary condition may not
hold now. For example, one can verify that the static mechanism
with the following score matrix C2×2:[

9 10
10 0

]

is dominant strategy truthful although it is not non-increasing.

6.2 Uncertainty in a Match
It is sometimes reasonable to assume uncertainty in a match even

if one player is better than the other. In such a model, the state is
described by a matrix Pn×n where pi,j is the probability that ai

wins bj . There are several variations of this model. Knuth [3] in-
troduced a simplification of the model called knockout tournament
by assuming a linear ordering x1, x2, . . . among players where xi

always beats xj when j ≥ i+2 and xi beats xj only at probability
p when j = i + 1. Graham, et al. [1] introduced an alternative
model by assuming xi beats xj with probability p for any i, j such
that i < j. Our model can be seen as a special case of Graham’s
model where p = 1. It would be an interesting future work to
generalize our state description to a random given matrix Pn×n.

6.3 Profit Maximization
Note that we only require our mechanisms to satisfy certain basic

criteria, based on which we can do certain optimizations. Suppose
the organizer is not so interested in the conciseness of the mecha-
nism as the profit that he can make from selling tickets. Further, his
profit might be determined by the following factors:

• The number of matches;
4A is indifferent to o1 and o2 if A weakly prefers o1 to o2 and
weakly prefers o2 to o1 at the same time.

• The level of matches: a match between a1 and b1 can sell
more tickets than that of an and bn;

• The truthfulness and honesty, so that the participants want to
play and the audience want to watch.

The organizer’s objective is to design a mechanism that (a) max-
imizes the total profit while (b) satisfies the fairness and honesty
conditions. As long as the ticket information is given, it is not hard
to see that the designing problem becomes a search problem over
the space where truthfulness and honesty are satisfied.

7. CONCLUDING REMARKS
We now summarize our contributions in this paper as follows:

• We have formulated the team competition problem in the
framework of mechanism design and proposed two types of
mechanisms called static and dynamic mechanisms that char-
acterize general forms of team competitions.

• We have put forward certain criteria such mechanisms should
satisfy.

• We have come up with certain theorems that describe how
these criteria can be satisfied for both types of mechanisms.

In particular, the knock-in mechanisms turn out to be extremely
rich in implementing all these criteria,. However, there are still
a large amount of dynamic mechanisms unexplored. Besides the
issues mentioned in section 6, it will be worthwhile to probe into
the unexplored part of dynamic mechanisms in the future.

8. REFERENCES
[1] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete

Mathematics: A Foundation for Computer Science.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1994.

[2] L. Hurwicz. Optimality and informational efficiency in
resource allocation processes. In K. Arrow, S. Karlin, and
P. Suppes, editors, Mathematical Methods in the Social
Sciences, pages 27–46. Stanford University Press, Stanford,
CA, 1960.

[3] D. E. Knuth. Problem 86-2, a random knockout tournament
(with solution). 93:127–129, 1987.

[4] J.-J. Laffont and D. Martimort. The Theory of Incentives :
The Principal-Agent Model. Princeton University Press,
December 2001.

[5] A. Mas-Colell, M. D. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University Press, June 1995.

[6] E. Maskin and T. Sjostrom. Implementation theory. In K. J.
Arrow, A. K. Sen, and K. Suzumura, editors, Handbook of
Social Choice and Welfare.

[7] N. Nisan, T. Roughgarden, Éva Tardos, and V. V. Vazirani,
editors. Algorithmic Game Theory. Cambridge University
Press, 2007.

[8] M. J. Osborne and A. Rubinstein. A Course in Game Theory.
MIT Press, 1994.

[9] T. Sandholm. Computing in mechanism design. The new
palgrave dictionary of economics, second edition, 2008.

[10] Y. Shoham and K. Leyton-Brown. Multiagent Systems.
Algorithmic, Game theoretic and Logical Fundations.
Cambridge University Press, 2008.

[11] M. P. Wellman. The economic approach to artificial
intelligence. ACM Computing Surveys, 28(4es):14–15, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

